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Abstract. The so-called Colombo-Nyquist
(Colombo (1984)) rule in satellite geodesy has
been revisited. This rule predicts that for a gravimet-
ric satellite flying in a (near-)polar circular repeat
orbit, the maximum resolvable geopotential spherical
harmonic degree (lmax) is equal to half the number
of orbital revolutions (nr) the satellite completes
in one repeat period. This rule has been tested for
different observation types, including geoid values at
sea level along the satellite ground track, orbit per-
turbations (radial, along-track, cross-track), low-low
satellite-to-satellite tracking, and satellite gravity
gradiometry observations (all three diagonal com-
ponents). Results show that the Colombo-Nyquist
must be reformulated. Simulations indicate that
the maximum resolvable degree is in fact equal to
knr + 1, wherek can be equal to 1, 2, or even 3
depending on the combination of observation types.
However, the original rule is correct to some extent,
considering that the quality of recovered gravity field
models is homogeneous as a function of geographical
longitude as long aslmax < nr/2.
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1 Introduction

Colombo (1984) has indicated that for exact satel-
lite circular repeat orbits and for continuous space-
borne gravimetric observations, the normal matrix
of gravity field spherical harmonic (SH) coefficients
becomes block-diagonal when organized per SH or-
der. The correlation between different orders is zero
as long as one can avoid overlapping frequencies,
which is generally guaranteed if the maximum re-
solvable SH degree (lmax) is less than half the num-
ber of orbital revolutionsnr which the satellite com-
pletes in a repeat period ofnd nodal days, orlmax <
nr/2 (Schrama (1990)). Although Sneeuw (2000) has
pointed out that avoiding overlapping frequencies is
fundamentally a restriction on the maximum SH or-

der. Nevertheless this has led to the rule-of-thumb
that the maximum resolvable degree is equal tonr/2,
referred to as the Colombo-Nyquist rule. This rule
has major implications for the design of future grav-
ity field missions, where several trade-offs have to be
made, such as temporal and spatial resolution, the ob-
servation/decoupling of different sources of gravity
field changes, etc. (Bender et al. (2008); Reubelt et al.
(2009); Visser and Schrama (2005)). Also, this rule
has implications for designing efficient gravity field
estimation schemes taking advantage of the structure
of normal matrices (Schrama (1991)). It has to be
noted that the maximum resolvable degree is defined
as the maximum SH degree for which also all coef-
ficients with SH orders complete to this maximum
degree can be resolved. It is thus not precluded that
certain individual coefficients with a higher SH de-
gree can be resolved, however with a SH order that is
not higher.

The Colombo-Nyquist rule-of-thumb has been
tested for a number of mission scenarios, i.e. differ-
ent repeat orbits and combinations of observables. It
is shown that this rule needs to be reformulated. The
selected mission scenarios are outlined in Section 2.
The method used for establishing the maximum re-
solvable degree for these mission scenarios is briefly
described in Section 3. Results are presented in Sec-
tion 4 and summarized in Section 5.

2 Mission scenarios

The selected repeat orbits and observable types are
listed in Table 1. The orbits are polar to ensure global
coverage. A repeat orbit is specified by the number
of revolutionsnr that is completed innd nodal days,
wherenr andnd do not have common prime factors
(except 1). Short repeat periods ranging from 1 to 3
days have been selected to limit the computational
burden. These short repeat periods are however suffi-
cient to test the validity of the Colombo-Nyquist rule.
Different parities fornr andnd were selected to as-
sess the possible impact on the maximum resolvable
degree of the number of distinct equator crossings.



Fig. 1.Ground track pattern for 15/1 (left) and 31/2 (right) polar repeat orbits.

Table 1.Selected polar repeat orbits and observation tech-
niques. The time interval between observations is always
taken equal to 1 s.

Repeat period Number of Height
nd (days) revolutionsnr (km)
1 15 554.25
2 31 404.35
3 46 453.41
3 47 356.16

Observation Precision
technique level
Geoid 1 cm
Orbit 1 cm
ll-SST 1µm
SGG 0.01 E

For nr − nd even the number of equator crossings
is equal tonr, whereas this is2nr for nr − nd odd
(Fig. 1).

The observable types include geoid values at sea
level along the satellite ground path (closely re-
lated to altimeter observations), orbit perturbations
in the radial, along-track and cross-track direction,
low-low satellite-to-satellite tracking (ll-SST) range
observations, and satellite gravity gradient (SGG)
observations (the diagonal components, where the
gradiometer instrument is aligned with the radial,
along-track, and cross-track direction). The obser-
vations are assumed to be provided continuously
with a constant time step of 1 s. The relation be-
tween SH gravity field coefficients and observa-
tions is given by well-established and tested trans-
fer functions (e.g. Schrama (1991); Sneeuw (2000);
Visser (1992); Visser et al. (1994, 2001, 2003); Visser
(2005)). These transfer functions are used to set up
the observation equations, which are to be solved by
the weighted least-squares method (Section 3). The
observations are assigned weights in accordance with
the precision levels listed in Table 1.

Fig. 2. Structure of normal matrix for gravity field coef-
ficients complete to degree and order 40 for a 15/1 polar
repeat orbit based on ll-SST observations (”kite matrix”).

3 Estimating the maximum resolvable spherical
harmonic degree

For a repeat orbit, Colombo (1984) indicated that
when a least-squares estimation method is used and
if a continuous time series of observations is obtained
with constant time interval, the normal matrix for the
SH coefficients will become block-diagonal when or-
ganized per order, and correlations between different
orders will be equal to zero as long as the maximum
resolvable degree is belownr/2. For higher degrees,
different orders get correlated and the normal matrix
adopts a Kite-like structure (e.g. Fig. 2). The ques-
tion is addressed if still a stable gravity field solution
can be obtained in the presence of these correlations,
thereby assuming that no use is made of prior knowl-
edge and/or regularization. This is tested by com-
puting the condition number of this matrix (ratio of
maximum and minimum eigenvalue) and by comput-



Fig. 3. Condition number of the normal equations (left) and global RMS formal geoid error as a function of the maximum
retrieved spherical harmonic degree. Use is made of geoid observations at sea level.

lmax = 7 lmax = 8

Fig. 4.Formal geoid error for 15/1-repeat for geoid observations as a function of the geographical location.

ing the Root-Mean-Square (RMS) of the cumulative
global formal geoid commission error for the esti-
mated SH coefficients. The formal geoid errors were
taken from the inverse (if the normal matrix is invert-
ible) of the weighted normal matrix. In all cases, nor-
mal equations were set up for all SH coefficients from
degree 2 to a certain maximum degreelmax. Thus
the impact of omission and/or aliasing of unmodeled
gravity field sources are not taken into account. The
exercises described in this paper only address the is-
sue of observability of a static gravity field complete
to the maximum SH degree solved for.

4 Gravity field observability

As a first test case, the condition numbers of the nor-
mal matrix and associated geoid error were computed
for 46/3 and 47/3 repeat orbits using geoid observa-
tions along the ground track. The condition numbers
display a large jump atlmax = nr (Fig. 3, left) and
in fact the normal matrix could not be inverted for

higher degrees (no formal geoid errors could be esti-
mated, Fig. 3, right). Forlmax = nr/2, a small jump
in the condition number occurs due to the additional
correlations between different SH orders, but this
does not lead to an unstable normal matrix. Also, the
slope of the geoid error increases forlmax > nr/2.
Based on these results, it can already be concluded
that the maximum resolvable degree can be as big as
nr and does not depend on the parity ofnr andnd.

It is interesting to note that as long aslmax <
nr/2, the geoid error is only latitude dependent and
does not change with longitude, whereas forlmax >
nr/2 the correlations between different orders cause
the geoid error to change as a function of longitude as
well (Fig. 4). However, this rule does not have a uni-
versal validity as well and depends on the parity ofnr

andnd. In fact, this rule applies only fornr−nd even.
Fornr − nd odd, the geoid error does not depend on
the longitude forlmax < nr (Table 2). The variation
of the geoid error as a function of latitude and lon-



15/1 polar repeat orbit

31/2 polar repeat orbit

Fig. 5. Condition number of the normal equations as a function of themaximum retrieved spherical harmonic degree and
the observation technique (the minimum degree is equal to 2).

gitude depends on the observable. For a 15/1-repeat
orbit and geoid observations, the minimum and maxi-
mum formal geoid error is equal to 0.19 and 6.42 mm
for a gravity field recovery complete to degree and or-
der 15, i.e. a ratio of 34, compared 0.0059 and 0.0109
or a ratio of 1.8 for ll-SST observations (Table 2).

Figs. 5 and 6 display the condition numbers of
the normal matrix and formal geoid error estimates
for gravity field recoveries up tolmax = 50 for the
15/1-repeat orbit, i.e.lmax > 3nr + 1, and up to
lmax = 65 for the 31/2-repeat period, i.e.lmax >
2nr + 1. The observable types include (1) geoid val-
ues, (2) radial orbit perturbations, (3) along-track or-
bit perturbations, (4) orbit perturbations in all direc-
tions (3D), (5) along-track diagonal gravity gradi-
ent component (Γxx), (6) cross-track diagonal gravity
gradient component (Γyy), (7) radial diagonal gravity
gradient component (Γzz), and (8) all three diagonal
gravity gradient components (Γxx+yy+zz).

Table 2.Formal global geoid error (mm) (RMS, minimum
and maximum) and the ratio of maximum and minimum
geoid error at the equator (ρeq) for 15/1- and 31/2-repeat
orbits. Forlmax < nr/2 the error is always constant as a
function of longitude.

Obs. lmax RMS ρeq min. max.
15/1-repeat
geoid 7 0.2632 1.00 0.1333 0.3200
geoid 8 0.3976 1.08 0.1419 0.9105
geoid 15 1.7342 12.54 0.1924 6.4213
ll-SST 7 0.0023 1.00 0.0013 0.0028
ll-SST 8 0.0027 1.00 0.0014 0.0034
ll-SST 15 0.0076 1.37 0.0059 0.0109
31/2-repeat
geoid 15 0.3810 1.00 0.1350 0.4724
geoid 16 0.4092 1.00 0.1392 0.5314
geoid 32 1.4984 1.00 0.1922 4.9795
ll-SST 15 0.0033 1.00 0.0013 0.0038
ll-SST 16 0.0036 1.00 0.0014 0.0042
ll-SST 31 0.0108 1.00 0.0041 0.0139
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Fig. 6. Global RMS formal geoid error from the inverse of the normal equations as a function of the maximum retrieved
spherical harmonic degree and the observation technique (the minimum degree is equal to 2).

It can be observed that for one-directional observ-
ables, such as geoid values, radial orbit perturbations,
along-track perturbations, and one diagonal of the
gravity gradients, the condition numbers display in
general small jumps atnr/2 and large jumps atnr+1.
The same can be observed for the associated geoid er-
ror estimate (provided the normal matrix was invert-
ible). In other words, for such one-directional observ-
ables it seems like the maximum resolvable SH de-
gree is equal to the number of revolutionsnr + 1 in a
repeat period. When using ll-SST observations, com-
binations of orbit perturbations (3D) or combinations
of SGG diagonal components, the normal matrix is
stable up to at leastlmax = 2nr + 1. For the 3D com-
bination of orbit perturbations, the condition number
and associated formal geoid error estimate stays sta-
ble for lmax + 1 up to3nr + 1, whereas for the com-
bination of all three diagonal SGG components, this
is still 2nr + 1.

Two questions that might now immediately be
raised is why this is not3nr+1 for the combination of
three SGG components as well and why it is2nr + 1

for ll-SST observations, which is a one-directional
observation type, namely along the line-of-sight be-
tween two trailing satellites. Concerning the SGG ob-
servations, it can be argued that the three diagonal
components are not independent because the grav-
itational potential satisfies the Laplace equation, or
Γxx + Γyy + Γzz = 0. Thus one diagonal SGG com-
ponents can always be written as a linear combination
of the other two. Thus, in fact only two independent
components remain. Concerning the ll-SST observa-
tions, it can be argued that these observations are a
modulated combination of along-track and radial or-
bit perturbations (Visser (2005)), assuming the two
associated satellites fly in the same orbital plane.



5 Conclusions

Computations have shown that the Colombo-Nyquist
rule in satellite geodesy, which predicts that the max-
imum resolvable degree is equal to half the number of
orbital revolutionsnr in a repeat period ofnd nodal
days, requires revision. Colombo’s rule is correct in
the sense that block-diagonal matrices are formed
whenlmax < nr/2 and when organized per SH order,
with no correlations between the orders. Colombo’s
rule is in general too pessimistic to infer statisti-
cal significance of SH coefficients in a gravity field
model, i.e. solutions are possible wherelmax ≥ nr/2

as is discussed in this paper. If the maximum degree
of estimated SH coefficients is larger thannr/2, the
gravity field solution will however no longer be ho-
mogeneous in the longitude direction for even par-
ities of nr and nd. However, the Colombo-Nyqyist
rule can be considered to be correct to some extent.
Namely, as stated in the previous paragraph, the qual-
ity of recovered gravity field models is always homo-
geneous as a function of geographical longitude as
long aslmax < nr/2.

It was also found that the maximum resolvable
degree does not depend on the parity of the number
of revolutions and nodal days in a repeat orbit, but
that the recovery error as a function of longitude does
vary due to the increasing ground track density when
traveling away from the equator. Finally, the maxi-
mum resolvable degree depends on the (combination
of) observable type(s). In case of combinations of in-
dependent observables, this maximum degree can be
one, two or three times the number of orbital revolu-
tions in a repeat period (plus 1 if the minimum SH de-
gree is taken equal to 2). Fortunately, in general grav-
ity satellites carry a complement of observing instru-
ments, including always GPS receivers in addition to
for example ll-SST instruments or a gradiometer.
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